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A superposition of &function inputs is used to investigate the approach to the steady 
state, oscillatory discharges, and a Gaussian pulse for high-P8clet-number parallel 
shear flows. Illustrative results are given for open-channel flow with a logarithmic 
velocity profile. 

1. Introduction 
Barton (1983) pointed out that there are two natural ways in which dispersion from 

a time-dependent input can be investigated: by a Fourier transform in time, or by 
a superposition of &function inputs. He explored the viability of the first alternative, 
following upon the work of Brinkman (1950), Carrier (1956), Philips (1963a, b )  and 
Chatwin (1973). The complexity of the mathematical structure revealed by Barton 
(1983) led him to conclude ‘that it may not be desirable or optimal to solve the time- 
dependent injection problem by Fourier decomposition in time ’. 

Here we explore the viability of the second alternative, i.e. a superposition of S- 
function inputs. The approach to a steady state has been analysed in this way by Gill 
& Sankarasubramanian (1972). However, the complicated temporal structure of 
their &function solution makes other problems inaccessible. Guided by the work of 
Tsai & Holley (1978) and of Chatwin (1980), Smith (1985) has given an alternative 
representation for the &function solution, with a comparatively simple temporal 
structure. This alternative representation renders the superposition integrals 
analytically tractable, and here we are able to investigate oscillatory discharges and 
a Gaussian pulse as well as the approach to the steady state. 

2. &function solution 
For a sudden release a t  t = 0, Smith (1985) posed the representation 

( 2 . l a )  

with [ = (t-T)/cr. (2.1 b )  

Here a(O)(x, y, z )  is the integral with respect to time of the concentration (the total 
exposure), T ( x ,  y, z )  is the temporal centroid, and v 2 ( x ,  y, z )  temporal variance as 
observed at  the location (x ,y ,x) .  The Hermite polynomials He, are defined 
recursively : 

He, = 1 ,  He, = [, He,,, = [He,+,-(m+ 1) He,. (2.2) 

In a Gaussian approximation we retain just the leading term. 
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FIGURE 1. The exposure do' experienced a t  heights 0, 0.25h, 0 .5h ,  0.75h, and h above the bed for 
a uniform unit discharge in logarithmic open-channel flow. For a uniform uni t  surge in discharge 
rate, do) is the eventual steadg-state concentration. The mixing length s* corresponds to about 20 
water depths downstream. 

For a plane parallel, high-P8clet-number flow with longitudinal velocity u ( y ,  z )  and 
transverse diffusivity K the coefficients a(0), T ,  8 satisfy the equations 

(2 .3a)  

(2.3b) 

%a, (a (0 )~2) -v .  (KV(a"'a2)) = ~ C C ' ~ ' K ( V T ) ~ .  (2 .3r)  

V denotes the transverse gradient operator (0, aY, a,) and q(y,  z )  is the cross-stream 
profile of the source discharge situated a t  x = 0. For impermeable boundaries we 
have 

If the diffusivity is not the same for y and z ,  then the scalar K needs to be replaced 
by a tensor K ~ ~ .  For moderate Pdclet numbers it would be necessary to include the 
effects of longitudinal diffusion. This could be achieved by reinterpreting V as being 
the three-dimensional gradient operator (a,, aY, a*), but a t  a considerable loss of 
mathematical simplicity (i.e. (3.3a, b, c) would become elliptic instead of being 
parabolic). 

Smith (1985) gives asymptotic solutions a t  small distances : 

and a t  large distances downstream (far enough that there is thorough mixing across 
the flow): 

(2.5) 

Overbars indicate cross-sectional average values, and L) is the shear dispersion 
coefficient. These large-distance asymptotes, with the absence of y, z-dependence, 
correspond to the classical Gaussian distribution (Taylor 1953). 



Time-dependent releases of solute in parallel Jloicis 589 

3.0 

2.5 

0.5 

0 
Downstream distance, X/X* 

FIGURE 2 .  The centroid time of arrival T as a function of downstream distances at  heights 0, 
0.25h, 0.5h, 0.75h, and h above the bed for a uniform discharge in logarithmic open-channel flow. 
For a n  oscillatory discharge with angular frequency w ,  the phase lag at different heights above the 
bed is given by wT. So there are marked phase differences for w greater than 5/t,. 
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FIGURE 3. The temporal variance c2 as a function of distance downstream of a uniform discharge 
in logarithmic open-channel flow. For an oscillatory discharge with angular frequency w ,  the decay 
exponent at different heights above the bed is -$uzuz. So, there is strong dept,h dependence for w 
greater than 5/t,. 
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For intermediate distances, Smith (1985) gives series representations for do’, 
dojT and a(0)c2 in terms of advection-diffusion eigenmodes. The particular case of 
a uniform discharge in logarithmic open-channel flow is detailed in $ 7  of the present 
paper, and is used in all the illustrative examples. The mixing length x* is defined to 
be the distance in which vertical concentration differences (with no x-dependence) 
decay by a factor of e = 2.718. The mixing time t ,  is the corresponding time 

t ,  = @x*. (2.6) 

Figures 1,  2 ,  3 show that for several mixing lengths downstream of the discharge, 
there is marked depth-dependence of the exposure, centroid time, and temporal 
variance. 

3. Convolution integral 
For a continuous discharge with strength f ( t ) ,  but with fixed cross-stream profile 

q(y,  z ) ,  the concentration can be written as a superposition of &function solutions 
(Gill & Sankarasubramanian 1972, equation 4;  Barton 1983, equation 8.2). The 
resulting extension of (2.1) can be written 

If, instead of the discharge rate, i t  was the initial concentration that was specified, 
then a different superposition integral would be required. 

By causality the full series (2.1) must be identically zero for t < 0, i.e. for ( < 
-T/a .  So, in principle, the lower limit in the convolution integral (3.1) could be 
set as -T/cT. However, any truncation of the series (3.1) does not preserve the 
causality property. It is to allow for this (spurious) future influence that the lower 
limit of the integral (3.1) is extended to - co. 

enables us to  estimat,e that  if we make a Gaussian 
approximation and retain just the a(O) term, then the relative error as regards 
causality is of order 

The rapid decay with 

(3.2) 

The quotient T/CT tends to infinity in the limits of small and of large x. Also, from 
the numerical results for T and for c2 shown in figures 3 ( a ,  b ) ,  7 and 4(a, b ) ,  8 of 
Smith (1985) we can infer that  T / a  has a minimum of about 4. Thus, in making a 
Gaussian approximation the relative error as regards causality would be of order 
3 x lop5 or less. 

The figures presented in this paper concern logarithmic open-channel flow. The 
disparity between the bulk velocity i~ and the turbulent friction ve1ocit.y u, leads to 
large values of T / a  (in excess of 10 for all s). So, any errors as regards causality are 
negligible. 

4. Approach to the steady state 
As a first illustrative example, we follow Gill & Sankarasubramanian (1972) and 

consider a discharge a t  x = 0, which is switched on a t  t’ime t = 0 with unit 
strength 

f ( t )  = 1 for t > 0. (4.1) 
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FIGURE 4. The times of arrival a t  the free surface and a t  the bed of the leading edge (T - c r ) / t ,  
(---), the midpoint T/t ,  (-), and the trailing edge (T+a)/t ,  (......), for a uniform surge in 
discharge strength in logarithmic open-channel flow. 

The approach to the steady state is given by 

The error-function structure agrees with the small- and large-2 asymptotes derived 
by Gill & Sankarasubramanian (1972, equations 43, 46). The fact that a(O)(x, y, x )  is 
the steady-state solution can be deduced directly from the field equation ( 2 . 3 ~ ) .  
Thus, in the present context, figure 1 gives the steady-state solution. 

At times g before and after the centroid time T ,  the concentration has reached 0.16 
and 0.84 of the ultimate steady-state values. Figure 4 shows this spread of times for 
the concentrations observed a t  the free surface and a t  the bed in logarithmic open- 
channel flow. Close to the discharge the surge of concentration arrives earlier and is 
much more abrupt a t  the free surface than at the bed. However, a t  larger distances 
downstream there has been more mixing across the flow, so there begins to be some 
overlap between the surges as observed at the free surface and at the bed. When the 
concentration is not independent of x,  the marked velocity difference between the free 
surface and the bed considerably delays the approach to uniform concentrations 
across the flow. Thus, the Taylor (1953) limit (2.5) only applies after ten or more 
mixing lengths downstream of the discharge. 
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5. Oscillatory discharges 

harmonic discharge strength 
As a second example, we follow Barton (1983) and Chatwin (1973) and consider a 

f ( t )  = coswt. (5.1) 

This can be regarded as being one harmonic in a Fourier decomposition of a periodic 
discharge strength. The necessary integrals involving Hem(f) are tabulated by 
Erdelyi et al. (1954, p. 289, equation 6),  and lead to the neat result 

m=2 J 

At different depths the values of o2 shown in figure 3 differ by as much as t:/25. So, 
the value of w = 5 / t ,  demarcates whether the exponential decay is similar or varies 
markedly across the flow. 

For high frequencies (w greater than 5/t,) the downstream penetration of 
concentration fluctuations is extremely sensitive to cr'. From the small-x asymptote 
(2.4) we infer (in agreement with Chatwin 1973) that  the distribution of concentration 
bccornes exponentially small except in a region centred on the fastest part of the flow 
(i.e where cr2 has its minimum). 

The phase lines follow the temporal centroid T ( x , y , z ) .  So, from the small-x 
asymptote (2.4), we recover another of Chatwin's (1973) results, that  for high 
frequencies the transport velocity will be near the maximum fluid velocity. Also, the 
phase difference across the flow can be well in excess of 7t. 

For low frequencies ( w  less than 5/t,) the concentration fluctuations penetrate to 
large values of cr. Thus, we can use the large-x asymptotes for the phase and decay. 
As deduced by Chatwin (1973), there is weaker variation of concentration across the 
flow (amplitude or phase) and the effective transport velocity is a. 

6. Gaussian pulse 
The table of Hermite polynomial integrals given by Erdelyi et al. (1954, 916.5) 

gives us a copious supply of tractable examples. In  particular, their equation (17) 
permits us to deal with a Gaussian pulse 

This is the same as adding togcther the &function variance o2 and the source 
variance p2 in the basic solution (2.1 a ) ,  or displacing the x-axis downwards in figure 3. 

At small distances downstream the effect is to remove the regions of high 
cwncrntration, particularly near the velocity maximum where u2 is anomalously 
small (sec figure 3). Far downstream, where T and cr2 grow linearly with distance, i t  
is as if there were a virtual &function source a t  
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7. Uniform discharge in logarithmic open-channel flow 

concern the special case 
The figures which have been used to illustrate the structure of the solutions all 

Here u is the bulk velocity, u* the friction velocity, k is von Karman's constant (in 
this paper we use the value 0.4), h the water depth, and z the vertical coordinate. For 
simplicity, there is no y-diffusion and the problem is only two-dimensional. We shall 
make considerable use of the fact that u* is typically much smaller then a. 

If we are to use the series solutions for a(0), dO)T and a(0)v2 derived by Smith (1985), 
then our first task is to determine the advection-diffusion eigenmodes : 

with 

(7.2a) 

(7.2b) 

(7.2c, d )  

Two-term approximations are given by 

ku* 1 + A  U -~ 2n +- 1 "  c -}+...I, 1 (7.3a) /A" = n(n+ 1)- 
ha [ ka{ 2n+l 2i=l(3-5)3 

sgn (m - n) ( - 1 )m+n+l(2m + i ); 
+ Z n ( n f l )  c (m-n)2 (m+n+ 1) Pm(2f i - l )  

m*n  

2ku (7.3b) 

Here Pm denotes the Legendre polynomial of degree m. The need to go beyond a first 
approximation in the small parameter U*/U stems from the occurrence of the 
coefficients 

- (2n+ l ) t ( - l ) "U*  -+..., 
n(n+l) ku $6" = 

ku 2n+ 1 2 f=l  ( J - &  l l  
$6;-1 =A{-+- c .1. +..., - u -2n 1 " 

(7.4a) 

(7.4b) 

u* (2n+i ) t (2m+1)f ( -1)n+m +... for m + n. (7.4c) 
Im-nl (m+n+l)  $6n$6m = 

The dots indicate neglected terms of order ( ~ * / a ) ~ .  

by Smith (1985) to 
Keeping the leading z-dependent terms, we can simplify the general results given 

(7.5a) u ( 2 n + l )  ( -1y  
ku,=, n(n+ 1) 

= 1 +A c 
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(7 .5b )  [1 -exp ( -,unx)], 
h c0 ( 2 n + l ) ( - l ) "  uT=x+-  C 
k2 "-1 n2(n+ 1 ) 2  

xhu 2 n + l  h2 2 n + l  
f p a 2  = 2 - 2  c -2, c l 1 - e ~ ~  ( - ~ n x ) I  u k3 n=1n3(n+1)3 IC n - 1 n 4 ( n + 1 ) 4  

h2 OC 

+2, c f , (x)P ,  
n-1 

[ l - e x p ( - p , ~ ]  (7 .5c )  

where the coefficients f,(x) are given by the summations 

2m+ 1 

X { l -  ~ r n  exP ( - P n x ) - P n  ~ X P  (-/.mx) 

x (2n+ 1) ( -  1)" 
+ n(n+l)  m*n m2(m+l)2lm-nl ( m + n + l )  

(7.5d) 

For the n = 1 mode we can define an e-folding distance x*, and a corresponding 

1. P m  - P n  

mixing time t,: 

In  particular, if we specify 
= 16u,, I% = 0.4, 

(7 .6a ,  b )  

(7 .6c ,  d )  

then the mixing length x, is twenty times the water depth. The results shown in 
figures 1-4 are made non-dimensional with respect to these natural scales x*, t,. For 
other flows the results can be expected to be qualitatively similar. 

Some authors use 

h2 6h t c = - = -  
z ku, 

as the characteristic mixing time. This is twelve times larger 
of the present definition is the transferability of the results 

(7 .7 )  

than t,. The advantage 
to  other flows. 

8. Concluding remarks 
The neatness of the results (4.2), (5.2), (6.2) for the approach to the steady state, 

oscillatory discharges, and for a Gaussian pulse are strong evidence for the efficacy 
of the superposition of $-function inputs. I n  the one-term (Gaussian) approximation 
the temporal concentration distribution has the same functional form a t  all 
positions. The three key ingredients a(O)(x, y, x), T ( x ,  y, x) and u2(x,  y,  z )  can be 
interpreted as being measures of the amplitude of the concentration, the time lag 
from the discharge to  the observation position, and the extent of the temporal 
averaging. For high-Pdclet-number flows (i.e. with longitudinal diffusion dominated 
by shear dispersion) the equations for T and a2 are amenable to exact and 
asymptotic solution. 
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